Random-Player Maker-Breaker games
نویسندگان
چکیده
In a (1 : b) Maker-Breaker game, one of the central questions is to find the maximal value of b that allows Maker to win the game (that is, the critical bias b∗). Erdős conjectured that the critical bias for many Maker-Breaker games played on the edge set of Kn is the same as if both players claim edges randomly. Indeed, in many Maker-Breaker games, “Erdős Paradigm” turned out to be true. Therefore, the next natural question to ask is the (typical) value of the critical bias for MakerBreaker games where only one player claims edges randomly. A random-player Maker-Breaker game is a two-player game, played the same as an ordinary (biased) Maker-Breaker game, except that one player plays according to his best strategy and claims one element in each round, while the other plays randomly and claims b (or m) elements. In fact, for every (ordinary) Maker-Breaker game, there are two different random-player versions; the (1 : b) random-Breaker game and the (m : 1) random-Maker game. We analyze the random-player version of several classical Maker-Breaker games such as the Hamilton cycle game, the perfect-matching game and the k-vertex-connectivity game (played on the edge set of Kn). For each of these games we find or estimate the asymptotic values of the bias (either b or m) that allow each player to typically win the game. In fact, we provide the “smart” player with an explicit winning strategy for the corresponding value of the bias.
منابع مشابه
Sharp thresholds for half-random games I
We study biased Maker-Breaker positional games between two players, one of whom is playing randomly against an opponent with an optimal strategy. In this paper we consider the scenario when Maker plays randomly and Breaker is “clever”, and determine the sharp threshold bias of classical graph games, such as connectivity, Hamiltonicity, and minimum degree-k. We treat the other case, that is when...
متن کاملThe diameter game
In a generalized Maker-Breaker positional game, Maker and Breaker play in turns. Maker makes a moves in each turn and Breaker makes b moves in each turn. We choose Maker to be the first player, although this nearly always makes no difference in the outcome of the game. We call such games (a : b)-games. If a = b, the game is fair, otherwise it is biased. If a = b > 1, the game is accelerated. In...
متن کاملGenerating random graphs in biased Maker-Breaker games
We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b = Θ( n lnn), playing a (1 : b) game on E(Kn), Maker can build a graph which contains copies of all spanning trees having ma...
متن کاملHypergraph Games
The above is called the “strong” version of the game. In the “weak” version, also called “maker-breaker”, the second player’s aim is not to occupy a winning set but just to prevent the first player from doing so. The interest is both for general theorems about games and also in particular games of interest, like the Hales-Jewett game (multi-dimensional noughts & crosses). Roughly speaking, a fa...
متن کاملBiased games on random boards
In this paper we analyze biased Maker-Breaker games and Avoider-Enforcer games, both played on the edge set of a random board G ∼ G(n, p). In Maker-Breaker games there are two players, denoted by Maker and Breaker. In each round, Maker claims one previously unclaimed edge of G and Breaker responds by claiming b previously unclaimed edges. We consider the Hamiltonicity game, the perfect matching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015